Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up: Could you solve it in O(n2) runtime?
Similar to 3 sum. Note we need to calculate the count, so if sum <= target, total sums we can get is right - left because all pairs (left, right), (left + 1, right) ... (right - 1, right) together with nums[i] will lead to a sum smaller than/equal to target.
public int threeSumSmaller(int[] nums, int target) { if (nums.length == 0) { return 0; } Arrays.sort(nums); int count = 0; for (int i = 0; i + 3 <= nums.length; i++) { if (i > 0 && nums[i] == nums[i - 1]) { continue; } int left = i + 1; int right = nums.length - 1; while (left < right) { int sum = nums[i] + nums[left] + nums[right]; if (sum <= target) { count += right - left; left++; } else { right--; } while (left < right && nums[left] == nums[left - 1]) { left++; } while (left < right && nums[right] == nums[right + 1]) { right--; } } } return count; }
No comments:
Post a Comment