Find popular item in sorted array of natural numbers.
An item is popular is if its repeated n/4 times or more.
For Ex:
Input: 123444445678
Popular item is 4.
Liner scan is O(n), but solution needs to be in O(logN) complexity and O(1) space complexity.
This is actually a very interesting problem. Since the popular item is defined as the element is repeated more than 1 / 4 times, and since it is a sorted array, so it can only occurs on 0, n / 4, n /2 and 3n/4 index. And the rest is just do binary search and get the range.
public class PopularNumber {
public static void popular(int[] n){
if(n == null || n.length == 0)
return;
int len = n.length;
int[] check = {0, len / 4, len / 2, 3 * len / 4};
for(int i = 0; i < 4; i++){
if(i > 0 && n[check[i]] == n[check[i - 1]])
continue;
int l = check[i];
int start = binarySearchStart(n, n[l]);
int end = binarySearchEnd(n, n[l]);
//need to be larger than the ceil in case len / 4.0 is not an integer
if(end - start + 1 >= Math.ceil(len / 4.0))
System.out.println(n[l]);
}
}
private static int binarySearchEnd(int[] n, int target){
int len = n.length;
int start = 0;
int end = len - 1;
while(start + 1 < end){
int mid = (start + end) / 2;
if(n[mid] <= target)
start = mid;
else
end = mid;
}
if(n[end] == target)
return end;
else return start;
}
private static int binarySearchStart(int[] n, int target){
int len = n.length;
int start = 0;
int end = len - 1;
while(start + 1 < end){
int mid = (start + end) / 2;
if(n[mid] >= target)
end = mid;
else
start = mid;
}
if(n[start] == target)
return start;
else
return end;
}
public static void main(String[] args) {
//int[] n = {1, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8};
int[] n = {1, 1, 2, 3, 4};
popular(n);
}
}
No comments:
Post a Comment