AdSense

Thursday, December 11, 2014

Subsets... II

"Given a collection of integers  S, return all possible subsets."
When it comes to problems like this, the question you should always ask yourself is: are there any duplicates? 
The answer is always yes! And here comes our Subsets II. 
It is defined as a backtracking problem. 
Basically, given a set S with duplicates [1,2,2]
add each element into the list, then remove it after add the list to the final and add the next one. 
To avoid duplicate lists, first condition is definitely num[i] != num[i - 1]. However, we still want to add i-th element if (i - 1)-th element is in the list as well as the condition where i-th element is the first element in the list. 
[1]  -> [1,2] -> [1,2,2] -> [1,2]  -> [1] -> [1, 2], duplicates, will not add -> [1] -> [] -> [2] -> [2,2] -> [2] ->[] -> [2], duplicates -> []. 


public class Solution {
    public ArrayList> subsetsWithDup(int[] num) {
        ArrayList> rst = new ArrayList>();
        if (num == null || num.length == 0)
            return rst;
        ArrayList list = new ArrayList();
        Arrays.sort(num);
        SetHelper(rst, list, num, 0);
        return rst;
    }
    private void SetHelper(ArrayList> rst, ArrayList list, int[] num, int start)
    {
        rst.add(new ArrayList(list));
        for (int i = start; i < num.length; i++)
        {
            if (i != start && num[i] == num[i - 1])
                continue;
            list.add(num[i]);
            SetHelper(rst, list, num, i + 1);
            list.remove(list.size() - 1);
        }
    }
}

No comments:

Post a Comment