Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given
return
Given
[1, 2, 3, 4, 5],return
true.
Given
return
[5, 4, 3, 2, 1],return
false.public boolean increasingTriplet(int[] nums) {
if (nums == null || nums.length < 3)
return false;
int x1 = Integer.MAX_VALUE, x2 = Integer.MAX_VALUE;
for(int num : nums) {
if (num < x1)
x1 = num;
else if (x1 < num && num < x2)
x2 = num;
else if (num > x2)
return true;
}
return false;
}
The second solution is also an accepted one, but it's too complicated and requires extra space.
public boolean increasingTriplet(int[] nums) {
if (nums == null || nums.length < 3)
return false;
TreeMap<Integer, List<Integer>> map = new TreeMap<>();
map.put(nums[0], new ArrayList<>());
for (int i = 1; i < nums.length; i++){
int num = nums[i];
if (map.floorKey(num) != null) {
for (Integer key : map.headMap(num).keySet()){
if (key == num)
continue;
List<Integer> values = map.get(key);
if (values.size() > 0 && num <= values.get(0))
values.clear();
values.add(num);
if (values.size() == 2)
return true;
}
}
if (!map.containsKey(num))
map.put(num, new ArrayList<>());
}
return false;
}
No comments:
Post a Comment